
Inside Macintosh Chapter Addition

® T H E S C R I P T M A N A G E R 2 . 0

Revised by: John Harvey
February 1989

Written by: Mark Davis & Sue Bartalo March
1988

This is an additional chapter for Inside Macintosh which documents
version 2.0 of the Script Manager. This chapter includes extended date
and time utility routines, general-purpose number formatting routines, and
additional text manipulation routines.
Changes since October 1988: Fixed minor inaccuracies and added C
examples.

Overview

The Script Manager 2.0 release extends the tools and capabilities of developers on the
Macintosh for three areas: text, dates and numbers. In addition, some minor bugs were fixed
and performance enhancements incorporated.

The new text routines include: lexically interpreting different scripts (e.g., in macro languages);
allotting justification to different format runs within a line; ordering format runs properly with
bidirectional text (Hebrew & Arabic); quickly separating Roman from non-Roman text, and
determining word-wrap in text processing. The international utilities text comparison routines
were significantly improved in performance, in amounts ranging from 25% to 94%.

The Macintosh date routines are extended to provide a larger range (roughly 35 thousand years),
and more information. This extension allows programs that need a larger range of dates to use
system routines rather than produce their own, which may not be internationally compatible.
The programmer can also access the stored location (latitude and longitude) and time zone of
the Macintosh from parameter RAM. The Map cdev gives users the ability to change and
reference these values.

The Script Manager

Inside Macintosh Chapter Addition

The new number routines supplement SANE, allowing applications to display formatted
numbers in the manner of Microsoft Excel or Fourth Dimension, and to read both formatted
and simple numbers. The formatting strings allow natural display and entry of numbers and
editing of format strings even though the original numbers and the format strings were entered
in a language other than that of the final user.

Implementation Notes

Some of the following routines have parameter blocks with reserved fields. These fields must
be zeroed.

In general, the additional routines are handled by the Script Manager rather than script interface
systems. The three exceptions are FindScriptRun, PortionText, and
VisibleLength which are handled by the individual script systems (such as Roman). The
version of the Script Manager can be checked before using any of these routines, to make sure
that it is Script Manager 2.0 (version is $0200 or greater). For compatibility, all Script Systems
test the version of the Script Manager and do not initialize if the major version number (first
byte) is greater than they expect.

The Script Manager

Inside Macintosh Chapter Addition

For testing only, the version number in INIT 2 can be changed in ResEdit in the resource
header to enable those systems to run; the header has the following format:

60xx Branch
xxxx Flags word
4943 Resource type (INIT)
4954
0002 Resource number (2)
02xx Script Manager version: change to 01FF for testing

For an old script, the three routines FindScriptRun, PortionText, and
VisibleLength will not work at all. In addition, the 'itl4' resource (see below) for the
script will not be present, so the IntlTokenize and number formatting routines will not
work properly for the particular script’s features.

The results returned from the new function calls are error and status codes which are found in
the MPW 3.0 header and interface files.

Note that in the following text, the term “language” generally refers to a natural language rather
than a programming language.

'Itl4' Resource

There is a new international resource, 'itl4', which contains information used by several of
these routines and must be localized for each script (including Roman).

In Pascal:

Itl4Rec = RECORD
flags: integer;
resourceType: longInt;
resourceNum: integer;
version: integer;
resHeader1: longInt;
resHeader2: longInt;
numTables: integer; { one-based }
mapOffset: longInt; { offsets are from record start }
strOffset: longInt;
fetchOffset: longInt;
unTokenOffset: longInt;
defPartsOffset: longInt;
resOffset6: longInt;
resOffset7: longInt;
resOffset8: longInt;

{ the rest is data pointed to by offsets}
END;

Itl4Ptr = ^Itl4Rec;
The Script Manager

Inside Macintosh Chapter Addition

Itl4Handle = ^Itl4Ptr;

The Script Manager

Inside Macintosh Chapter Addition

In C:

struct Itl4Rec {
 short flags;
 long resourceType;
 short resourceNum;
 short version;
 long resHeader1;
 long resHeader2;
 short numTables; /*one-based*/
 long mapOffset; /*offsets are from record start*/
 long strOffset;
 long fetchOffset;
 long unTokenOffset;
 long defPartsOffset;
 long resOffset6;
 long resOffset7;
 long resOffset8;
};

#ifndef __cplusplus
typedef struct Itl4Rec Itl4Rec;
#endif

typedef Itl4Rec *Itl4Ptr, **Itl4Handle;

Text

The new text routines include: lexically interpreting different scripts (e.g., in macro languages);
allotting justification to different format runs within a line; ordering format runs properly with
bidirectional text (Hebrew & Arabic); quickly separating Roman from non-Roman text, and
determining word-wrap in text processing. The international utilities text comparison routines
were significantly improved in performance, in amounts ranging from 25% to 94%.

Parse Table

In Pascal:

Type
CharByteTable = Packed Array [0..255] of SignedByte;

Function ParseTable(table: CharByteTable): Boolean;

typedef char CharByteTable[256];

In C:

pascal Boolean ParseTable(CharByteTable table);

Double-byte characters have distinctive high (first) bytes, which allows them to be distinguished from single-byte characters. The ParseTable
routine can be used to traverse double-byte text quickly. It does this by filling a table of bytes with values which indicate the extra number of bytes
taken by a given character. This array can then be used instead of making function calls on each byte. As with the other script-specific routine calls,
the values in the table will vary with the script of the current font in thePort, so you must make sure to set the font correctly.

The Script Manager

Inside Macintosh Chapter Addition

An entry in the table is set to 0 for a single-byte character and 1 for the first byte of a double-byte character. (With a single-byte script, the entries are
all zero.) The return value from the routine will always be true. This routine has always been present in the Script Manager, but was not documented
until now. Also note that script systems will never require more than two bytes per character, so you can safely assume that there are only single-byte
and double-byte characters.

For example, in the following code the reference to tablePtr[myChar] is functionally equivalent to a use of _CharByte, but does not involve
a trap call.

In Pascal:

Var
myChar: Integer;
i, max: Integer;
tablePtr: CharByteTable;
s: String [255];
parseResult: Boolean;

Begin
parseResult := ParseTable(tablePtr);
i := 1;
max := length (s);
While i <= max do Begin

myChar := ord(s[i]); {get byte}
i := i + 1; {skip to start of next}
if (tablePtr[myChar] <> 0) then Begin {if double-byte}

myChar := myChar * $100 + ord(s[i]);{include next byte}
i := i + 1; {skip to start of next}

End;
{do something with myChar}

End;
End;

In C:

short mychar;
CharByteTable table;
char *s = "Test String";
Boolean parseResult;

{
parseResult = ParseTable(table);

while (*s) {
mychar = *s; /*get the first byte*/
s++;
if (table[*s] <> 0)

mychar = (mychar * 0x100) + *s;
/* Do something with mychar */

}
}

Remember that the CharByteTable is specific to the script. There could be two or three scripts installed that are double-byte and have different
CharByteTable arrays.

The Script Manager

Inside Macintosh Chapter Addition

IntlTokenize

In Pascal:

Function IntlTokenize (tokenParam : TokenBlockPtr): TokenResults;

In C:

pascal TokenResults IntlTokenize(TokenBlockPtr tokenParam);

The IntlTokenize routine is intended for use in macro expressions and similar programming constructs intended for general users. It allows the
program to recognize variables, symbols and quoted literals without depending on the particular natural language (e.g., English vs. Japanese).

The routine is a mildly programmable regular expression recognizer for parsing text into tokens. The single parameter is a parameter block
describing the text to be tokenized, the destination of the token stream, the 'itl4' resource handle, and the various programmable options.
IntlTokenize will return a list of tokens found in the text.

In Pascal:

TokenBlock = RECORD
source: Ptr; {pointer to stream of characters}
sourceLength: LongInt; {length of source stream}
tokenList: Ptr; {pointer to array of tokens}
tokenLength: LongInt; {maximum length of TokenList}
tokenCount: LongInt; {number of tokens generated by tokenizer}
stringList: Ptr; {pointer to stream of identifiers}
stringLength: LongInt; {length of string list}
stringCount: LongInt; {number of bytes currently used}
doString: Boolean; {make strings & put into StringLIst}
doAppend: Boolean; {append to TokenList rather than replace}
doAlphanumeric: Boolean; {identifiers may include numeric}
doNest: Boolean; {do comments nest?}
leftDelims, rightDelims: ARRAY[0..1] OF TokenType;
leftComment, rightComment: ARRAY[0..3] OF TokenType;
escapeCode: TokenType; {escape symbol code}
decimalCode: TokenType; {decimal symbol code}
itlResource: Handle; {itl4 resource handle of current script}
reserved: array [0..7] of Longint; { must be zeroed! }

END;

TokenType = Integer; {see list of TokenType values at end of document}
TokenRec = RECORD

theToken: TokenType;
position: Ptr; {ptr into original source}
length: LongInt; {length of text in original source}
stringPosition: StringPtr; {Pascal/C string copy of identifier}

END;

The Script Manager

Inside Macintosh Chapter Addition

In C:

struct TokenBlock {
 Ptr source; /*pointer to stream of characters*/
 long sourceLength; /*length of source stream*/
 Ptr tokenList; /*pointer to array of tokens*/
 long tokenLength; /*maximum length of TokenList*/
 long tokenCount; /*number tokens generated by tokenizer*/
 Ptr stringList; /*pointer to stream of identifiers*/
 long stringLength; /*length of string list*/
 long stringCount; /*number of bytes currently used*/
 Boolean doString; /*make strings & put into StringLIst*/
 Boolean doAppend; /*append to TokenList rather than replace*/
 Boolean doAlphanumeric; /*identifiers may include numeric*/
 Boolean doNest; /*do comments nest?*/
 TokenType leftDelims[2];
 TokenType rightDelims[2];
 TokenType leftComment[4];
 TokenType rightComment[4];
 TokenType escapeCode; /*escape symbol code*/
 TokenType decimalCode;
 Handle itlResource; /*ptr to itl4 resource of current script*/
 long reserved[8]; /*must be zero!*/
};

#ifndef __cplusplus
typedef struct TokenBlock TokenBlock;
#endif

typedef TokenBlock *TokenBlockPtr;

typedef short TokenType;

struct TokenRec {
 TokenType theToken;
 Ptr position; /*pointer into original Source*/
 long length; /*length of text in original source*/
 StringPtr stringPosition; /*Pascal/C string copy of identifier*/
};

For the TokenBlock record:

source is a pointer to the beginning of a stream of characters (not a Pascal string).

sourceLength is the number of characters in the source stream.

tokenList is a pointer to memory allocated by the application for the token stream. The tokenizer places the tokens it generates at and after
the address in tokenList.

tokenLength is the number of tokens that will fit in the memory pointed to by tokenList (not the number of bytes).

tokenCount is the number of tokens that are currently occupying the space pointed to by tokenList. If the doAppend flag is true, then
tokenCount must be a correct number before calling the tokenizer. The tokenizer modifies this value to show how many tokens are in the
token stream after tokenizing.

stringList is a pointer to memory allocated by the application for strings that the tokenizer generates if the doString flag is true. If the
flag is false, then stringList is ignored.

The Script Manager

Inside Macintosh Chapter Addition

stringLength is the number of bytes of memory allocated for stringList.

stringCount is the number of bytes that are currently occupying the space pointed to by stringList. If the doAppend flag is true, then
stringCount must be a correct number before calling the tokenizer. The tokenizer modifies this value to show how many bytes are in the
string stream after tokenizing.

doString is a boolean flag that instructs the tokenizer to create a sequence of even-boundaried, null-terminated Pascal strings. Each token
generated by the tokenizer will have a string created to represent it if the flag is true. Each token record contains the address of the string that
represents it.

doAppend is a boolean flag that instructs the tokenizer to append tokens to the space pointed to by tokenList rather than replace whatever
is there. tokenCount must correctly reflect the number of tokens in the space pointed to by tokenList.

doAlphanumeric is a boolean flag that, when true, states that numerics may be mixed with alphabetics to create alphabetic tokens.

doNest is a boolean flag that instructs the tokenizer to allow nested comments of any depth.

leftDelims is an array of two integers, each of which corresponds to the class of the symbol that may be used as a left delimiter for a quoted
literal. Double quotes, for instance, is class token2Quote. If only one left delimiter is needed, the other must be specified to be delimPad.

rightDelims is an array of two integers, each of which corresponds to the class of the symbol that may be used as the matching right
delimiter for the corresponding left delimiter in leftDelims.

leftComment is an array of four integers. Each successive pair of two describes a pair of tokens that may be used as left delimiters for
comments. These tokens are stored in reverse order. The tokens numbered zero and two are the second tokens of the two-token sequences; the
tokens numbered one and three are the first tokens of the two-token sequences.

If only one token is needed for a delimiter, the second token must be specified to be delimPad. If only one delimiter is needed, then both of
the tokens allocated for the other symbol must be delimPad. The first token of a two-token sequence is the higher position in the array. For
example, the two left delimiters (* and { would be specified as

leftComment[0]:= tokenAsterisk (*asterisk*)
leftComment[1]:= tokenLeftParen; (*left parenthesis*)
leftComment[2]:= delimPad ; (*nothing*)
leftComment[3]:= tokenLeftCurly; (*curly brace*)

rightComment is an array of four integers with similar characteristics as leftComment. The positions in the array of the right delimiters
must be the same as their matching left delimiters.

escapeChar is a single integer that is the class of the symbol that may be used for an escape character. The tokenizer considers the escape
character to be an escape character (as opposed to being itself) only within quoted literals.

The Script Manager

Inside Macintosh Chapter Addition

If backslash (\) is given as the escapeChar, then the tokenizer would consider it an escape character in the following string:

"This is an escape\n"

It would not be considered an escape character in a non-quoted string like the following:

This isn't an escape\n

decimalCode is a single integer that is the tokenType that may be used for a decimal point. The tokenizer considers the decimal character
to be a decimal character (as opposed to being itself) only when flanked by numeric or alternate numeric characters, or when following them.
When the strings option is selected, the decimal character will always be transliterated to an ASCII period (and alternate numbers will be
transliterated to ASCII digits).

itlResource is a handle to the 'itl4' resource of the script in current use. The application must load the 'itl4' resource and place its
handle here before calling the tokenizer. Every time the script of the text to be tokenized changes, the pointer to the respective 'itl4'
resource must be placed here.

reserved locations must all be zeroed.

For the token record:

theToken is the ordinal value of the token represented by the token record.

position points to the first character in the original text that caused this particular token to be generated.

length is the length in bytes of the original text corresponding to this token.

stringPosition points to a null-terminated, even-boundaried Pascal string that is the result of using the doString option. If doString
is false then stringPosition is always set to NIL.

The available token types are: whitespace, newline, alphabetic, numeric, decimal, endOfStream, unknown, alternate numeric, alternate decimal, and
a host of fixed token symbols, such as (# @ : := .

The tokenizer does not attempt to provide complete lexical analysis, but rather offers a programmable “pre-lex” function whose output should then be
processed by the application at a lexical or syntactic level.

The programmable options include: whether to generate strings which correspond to the text of each token; whether the current tokenize call is to
append to, rather than replace, the current token list; whether alphabetic tokens may have numerics within them; whether comments may be nested;
what the left and right delimiters for comments are (up to two sets may be specified); what the left and right delimiters for quoted literals are (up to
two sets may be specified); what the escape character is; and what the decimal point symbol is.

Some users may use two or more different scripts within a program. However, each script’s character stream must be passed separately to the
tokenizer because different resources must be passed to the tokenizer depending on the script of the text stream. Appending tokens to the token
stream lets the application see the tokens generated by the different scripts’ characters as a single

The Script Manager

Inside Macintosh Chapter Addition

token stream. Restriction: users may not change scripts within a comment or quoted literal because these syntactic units must be complete within a
single call to the tokenizer in order to avoid tokenizer syntax errors.

The application may specify up to two pairs of delimiters each for both quoted literals and comments. Quoted literal delimiters consist of a single
symbol, and comment delimiters may be either one or two symbols (including newline for notations whose comments automatically terminate at the
end of lines). The characters that compose literals within quoted literals and comments are normally defined to have no syntactic significance;
however, the escape character within a quoted literal does signal that the following character should not be treated as the right delimiter. Each
delimiter is represented by a token, as is the literal between left and right delimiters.

If two different comment delimiters are specified by the application, then the doNest flag always applies to both. Comments may be nested if so
specified by the doNest flag with one restriction that must be strictly observed in order to prevent the tokenizer from malfunctioning: nesting is
legal only if both the left and right delimiters for the comment token are composed of two symbols each. In this version, there is limited support for
nested comments. When using this feature, test to insure that it meets your requirements.

An escape character between left and right delimiters of a quoted literal signals that the following character is not the right delimiter. An escape
character is not specially recognized and has no significance outside of quoted literals. When an escape character is encountered, the portion of the
literal before the escape is placed into a single token, the escape character itself becomes a token, the character following the escape becomes a token,
and the portion of the literal following the escape sequence becomes a token.

A sequence of whitespace characters becomes a single token.

Newline, or carriage return, becomes a single token.

A sequence of alphabetic characters becomes an alphabetic token. If the doAlphanumeric flag is set, then alphabetic characters include digits,
but the first character must be alphabetic.

A sequence of numeric characters becomes a numeric token.

A sequence of numeric characters followed by a decimal mark, and optionally followed by more numeric characters, becomes a realNumber token.

Some scripts have not only “English” digits, but also their own numeral codes, which of course will be unrecognizable to the typical application. A
sequence of alternate digits becomes an alternate numeric token. If the strings option is selected then the digits will be transliterated to “English”
digits. This includes the realNumber tokens, whose results become alternate real tokens.

The end of the character stream becomes a token.

A token record consists of a token code, a pointer into the source stream (signifying the first character of the sequence that generated the token), the
byte length of the sequence of characters that generated the token, and space for a pointer to a Pascal string, explained next.

The application may instruct the tokenizer to generate null-terminated, even-boundaried Pascal strings corresponding to each token. In this case, if
the token is anything but alphabetic or numeric then the text of the source stream is copied verbatim into the Pascal string. Otherwise, if the text in

The Script Manager

Inside Macintosh Chapter Addition

the source stream is Roman letters or numbers then those characters are transliterated into Macintosh eight-bit ASCII and a string is created from the
result, allowing users of other languages to transparently use their own script’s numerals or Roman characters for numbers or keywords. Non-Roman
alphabetics are copied verbatim.

Semantic attributes of byte codes vary from natural language to natural language. As an example, in the Macintosh character set code $81 is an Å,
but in Kanji this code is the first byte of many double-byte characters, some of which are alphabetic, some numeric, and some symbols. This
information is retrieved from the 'itl4' resource, which also contains a canonical string format for the fixed tokens, so that the internal format of
formulæ can be redisplayed in the original language.

'itl4' also holds a string copy routine which converts the native text to the corresponding English (except for alphanumerics). As with the other
international resources, the choice of 'itl4' depends on the script interface system in use.

itl4 Resource

total3=sum(A3:B9); // yearly totals

Macro Text

alpha equalsalpha l. par alpha colon alpha r.par blank com.

Roman,
Japanese,
Chinese,
Korean,
Arabic,
Hebrew,
Thai,
Indian,
…

Figure 1–IntlTokenize

The untokenTable in the 'itl4' resource contains standard representations for the fixed tokens, and can be used to display the internal format.
An example of how a user might access this table and use the token information follows:

The Script Manager

Inside Macintosh Chapter Addition

In Pascal:

Type
UntokenTable = Record

len: Integer;
lastToken: Integer;
index: array [0..255] of Integer; {index table; last = lastToken}
{list of pascal strings here. index pointers are from front of table}

End;
UntokenTablePtr = ^UntokenTable;
UntokenTableHandle = ^UntokenTablePtr;

Function GetUntokenTable(Var x: UntokenTableHandle): Boolean;
Var

itl4: itl4Handle;
p: UntokenTablePtr;

Begin
GetUntokenTable := false; {assume error}
itl4 := itl4Handle(IUGetIntl(4)); {get itl4 record}
if itl4 <> nil then begin {if ok}

HLock(Handle(itl4)); {lock for safety}
p := UntokenTablePtr(ord(itl4^)+itl4^^.untokenOffset);

{untokenize parts subtable}
With p^ Do Begin {using resource table}

x := UntokenTableHandle(NewHandle(len));
{make handle of proper size}

BlockMove(Ptr(p),Ptr(x^),len); {copy contents}
End;
HUnlock(Handle(itl4)); {free back up}
GetUntokenTable := true; {no error}

End;
End;

If (GetUntokenTable(myUntokenTable)) then
With curToken^ Do Case theToken OF

{. . .}
tokenAlpha:

AppendString(myVariable[i]);
Otherwise With myUntokenTable^^, curToken^ Do Begin

If theToken > lastToken Then Begin
AppendString('?');

End Else Begin
sPtr := pointer(ord(@len) + index[theToken]);
AppendString(sPtr^);

End; {if}
End; {item}

End; {case}

The Script Manager

Inside Macintosh Chapter Addition

In C:

struct UntokenTable {
 short len;
 short lastToken;
 short index[256]; /*index table; last = lastToken*/
};

#ifndef __cplusplus
typedef struct UntokenTable UntokenTable;
#endif

typedef UntokenTable *UntokenTablePtr, **UntokenTableHandle;

GetUntokenTable(UntokenTableHandle *x)
{

Itl4Handle itl4;
UntokenTablePtr p;

itl4 = (Itl4Handle)IUGetIntl(4);

if (itl4) {
HLock((Handle)itl4);

p = (UntokenTablePtr)((char *)(*itl4) + ((*itl4)->unTokenOffset));

*x = (UntokenTableHandle)NewHandle(p->len);

if (x)
BlockMove((Ptr)p,(Ptr)**x,p->len);

HUnlock((Handle)itl4);

return((short)*x);
}
else

return(0);
}

if (GetUntokenTable(myUntokenTable))
switch curtoken->theToken {
/* ... */
case tokenAlpha:

AppendString(myvariable[i]);
break;

default:
if (curtoken->theToken > lastToken)

AppendString("?");
else {

Hlock((Handle)myUntokenTable);
sptr = (char *)(*myUntokenTable) + (*myUntokenTable)->index[curtoken-

>theToken];
AppendString(sptr);
HUnlock((Handle)myUntokenTable);

}
break;

}

The Script Manager

Inside Macintosh Chapter Addition

PortionText

In Pascal:

Function PortionText (textPtr : Ptr; textLen : Longint): Fixed; {proportion}

In C:

pascal Fixed PortionText(Ptr textPtr,long textLen);

This routine returns a result which indicates the proportion of justification that should be allocated to this text when compared to other text. It is used
when justifying a sequence of format runs, so that the appropriate amount of extra width is apportioned properly among them. For example, suppose
that there are three format runs on a line: A, B, and C. The line needs to be widened by 11 pixels for justification. Calling PortionText on these
format runs yields the first row in the following table:

A B C Total
PortionText: 5.4 7.3 8.2 20.9
Normalized: .258 .349 remainder 1.00
Pixels (p): 2.84 3.84 remainder 11.0
Rounded (r): 3 4 remainder 11

The proportion of the justification to be allotted to A is 25.8%, so it receives 3 pixels out of 11. In general, to prevent rounding errors, rn =
round(∑1..n p) – ∑1..n–1 r (which can be computed iteratively); e.g., rB is round(3.84+2.84) – 3, and rC is round(11.0) – 7.

For normal Roman text, the result is currently a function of the number of spaces in the text, the number of other characters in the text,
and the font size (the raw size, not ascent + descent + leading). This may change in the future, so values should be compared at the
time of execution.

The Script Manager

Inside Macintosh Chapter Addition

The quick brown fox jumped over the lazy dog

 A B C

5.4 7.3 8.2

PortionText

25.8% 34.9% 39.2%

Normalized

11 pt Gap

Justifying Format Runs

2.84 pt 3.84 pt 4.32 pt

Scaled

Figure 2–PortionText

Format Order

In Pascal:

FormatOrder = array [0..0] of Integer;
FormatOrderPtr = ^FormatOrder;

Procedure GetFormatOrder (ordering: FormatOrderPtr;
 firstFormat: Integer;
 lastFormat: Integer;
 lineRight: Boolean;
 RLDirProc: Ptr;
 dirParam: Ptr);

In C:

typedef short FormatOrder[1];
typedef FormatOrder *FormatOrderPtr;

pascal void GetFormatOrder(FormatOrderPtr ordering,short firstFormat,short lastFormat,
 Boolean lineRight,Ptr rlDirProc,Ptr dirParam);

This routine orders the text properly for display of bidirectional format runs. Word processing programs that use this procedure for multi-font text
can be independent of script text-ordering in a line (e.g., Hebrew or Arabic right-left text). The ordering points to an array of integers, with

The Script Manager

Inside Macintosh Chapter Addition

(lastFormat – firstFormat + 1) entries. The GetFormatOrder routine retrieves the direction of each format by calling the direction procedure,
RLDirProc, which has the following format:

In Pascal:

Function MyRLDirProc (theFormat : Integer; dirParam : Ptr) :Boolean;

In C:

pascal Boolean MyRLDirProc(short theFormat, Ptr dirParam);

The RLDirProc is called with the values from firstFormat to lastFormat to determine the directions of each of the format runs. It returns
true for right-left text direction, otherwise false. The parameter dirParam is available to provide other necessary information for the direction
procedure (i.e., style number, pointer to style array, etc).

GetFormatOrder returns a permuted list of the numbers from firstFormat to lastFormat. This permuted list can be used to draw or
measure the text. (For more detail, see the Script Manager developers’ packet). The lineRight parameter is true if the text is right-left
orientation, otherwise false.

The array Ordering is created and filled by your application. The first element in the array should correspond to the parameter firstFormat,
and the last element should correspond to lastFormat. GetFormatOrder loops through this array and passes each element in the array back to
the RLDirProc function. Since you fill the ordering array and you write the RLDirProc, you should obviously store format runs in a way that
makes the GetFormatOrder routine useable.

One obvious way to do this would be to declare a record type for format runs that allowed you to save things like font style, font ID, script number,
and so on. You then could store these records in an array. When the time came to call GetFormatOrder, you would simply fill the Ordering
array with the indexes that you used to access your array of format run records. GetFormatOrder would return an array which described the
correct drawing order for your format runs.

Consider this example. Let uppercase letters stand for format runs that are left to right, and lowercase letters stand for right-left format runs. For
example, there are two format runs in the following line.

1 2
ABCfed

With left-right line direction, the text should appear on the screen as:

1 2
ABCdef

With right-left line direction, the text should appear on the screen as:

2 1
fedABC

The Script Manager

Inside Macintosh Chapter Addition

GetFormatOrder is used to tell you what order the format runs should be drawn in based on line direction for a particular line of text.

3 4 5 6 7 8 9 4 3 5 6 8 7 9
myOrdering

myRLDirProc(3) = T
myRLDirProc(4) = T
myRLDirProc(7) = T
myRLDirProc(8) = T
otherwise
myRLDirProc = F

myRLDirProc

firstFormat = 3
lastFormat = 9
lineRight = GetSysJust

Figure 3–GetFormatOrder

For example, in Pascal:

GetFormatOrder(myOrdering,firstFormat,lastFormat,GetSysJust = 0,MyRLDirProc,nil);
for i := 0 to lastFormat-firstFormat do

with MyFormat [myOrdering [i]], MyStyle [formatStyle] do begin
TextFont(styleFont);
{set up other text style features...}
case what of

drawing: DrawText(textStartPtr, formatStart, formatLength);
measuring: TextWidth(textStartPtr, formatStart, formatLength);
{and so on}

end; {case}
end; {with}

end; {for}

In C:

GetFormatOrder(myOrdering,firstFormat,lastFormat,(Boolean)GetSysJust(),(Ptr)MyRLDirProc,nil);
for (i = 0, i <= (lastFormat-firstFormat), i++)

/* set up style stuff */
switch what {

case drawing:
DrawText(textStartPtr,formatStart,formatLength);
break;

case measuring:
TextWidth(textStartPtr,formatStart,formatLength);
break;

default:
break;

}

The Script Manager

Inside Macintosh Chapter Addition

FindScriptRun

In Pascal:

Function FindScriptRun (textPtr: Ptr; textLen: Longint;
 VAR lenUsed: Longint): ScriptRunStatus;

ScriptRunStatus = RECORD
script: SignedByte;
variant: SignedByte;

END;

In C:

pascal struct ScriptRunStatus FindScriptRun(Ptr textPtr,long textLen,long *lenUsed);

struct ScriptRunStatus {
 short script;
 short variant;
};

char *mychararray = 'abcDEFghi';
char *textptr;
long textlength;
ScriptRunStatus srs;
long lenused;

srs = FindScriptRun(mychararray,(long)strlen(mychararray),&lenUsed);
/* lenUsed would now = 3, blocktype would equal 0 */
/* we can point at the remainder of the text with the following code */
textptr = mychararray + lenUsed;
textlen = strlen(mychararray) - lenUsed;

For compatibility, each script allows Roman text to be mixed in. This routine is used to break up mixed text (Roman & Native) into blocks. The
lenUsed is set to reflect the length of the remaining text. The return value reflects the type of block: the upper byte is the script (0 being Roman
text) and the lower byte being script-specific (script systems can return types of native sub-scripts, such as Kanji, Katakana and Hiragana for
Japanese). For example, given that the capital letters represent Hebrew text:

In Pascal:

myCharArray = 'abcDEFghi';
myCharPtr := @myCharArray;
blockType := FindScriptRun (myCharPtr, 9, lenUsed);
{lenUsed = 3, blockType = 0: get remainder of text with: }
textPtr := ptr(ord(textPtr)+lenUsed);
textLen := textLen-lenUsed;

The Script Manager

Inside Macintosh Chapter Addition

StyledLineBreak

In Pascal:

Function StyledLineBreak(textPtr: Ptr;
textLen: Longint;
textStart: Longint;
textEnd: Longint;
flags: Longint;
Var textWidth: Fixed; {on exit, set if too long}
Var textOffset: Longint)

:StyledLineBreakCode;
StyledLineBreakCode = (smBreakWord,smBreakChar,smBreakOverflow);

In C:

pascal StyledLineBreakCode StyledLineBreak(Ptr textPtr,long textLen,long textStart,
 long textEnd,long flags,Fixed *textWidth,long *textOffset);

enum {smBreakWord,smBreakChar,smBreakOverflow};
typedef unsigned char StyledLineBreakCode;

This routine breaks a line on a word boundary. The user will loop through a sequence of format runs, resetting the textPtr and textLen each
time the script changes; and resetting the textStart and textEnd for each format run. The textWidth will automatically be decremented by
StyledLineBreak.

TextPtr points to the start of the text, textLen indicates the maximum length of the text, and the textWidth parameter indicates the maximum
pixel width of the rectangle used to display the text starting at the textStart and ending at the textEnd. The flags parameter is reserved for
future expansion and must be zero.

textPtr
textLen

textEnd

textWidth

textStart

Times Chicago Venice Courier Kyoto

Figure 4–StyledLineBreak

On input, a non-zero textOffset indicates whether this is the first format run (possibly forcing a character break rather than a word break: if
textOffset is non-zero, at least one character will be returned if the line is not empty). On output it is the number of bytes from textPtr up to
the point where the line should be broken. If the passed textWidth extended beyond the end of the text (i.e., is larger than the width from
textoffset to textLen), then the width of the text is subtracted from the textWidth and the result returned in the textWidth parameter.
This can be used for the next format run.

The Script Manager

Inside Macintosh Chapter Addition

The routine result indicates whether the routine broke on a word boundary, character boundary, or the width extended beyond the edge of the text.

When used with single-format text, the textStart can be zero, and the textEnd identical with the textLen. With multi-format text, the
interval between textStart and textEnd specifies a format run. The interval between textPtr and textLen specifies a script run (a
contiguous sequence of text where the script of each of the format runs is the same). Note that the format runs in StyledLineBreak must be
traversed in back-end storage order, not display order (see GetFormatOrder).

In other words, if the current format run is included in a contiguous sequence of other format runs of the same script, then the textPtr should point
to the start of the first format run of the same script, while the textLen should include the last format run of the same script. This is so that word
boundaries can extend across format runs; they will never extend across script runs.

Although the offsets are in longint values and widths in fixed for future extensions, in the current version the longint values should be
restricted to the integer range, and only the integer portion of the widths will be used.

VisibleLength

In Pascal:

FUNCTION VisibleLength (textPtr : Ptr; textLen: Longint): Longint;

In C:

pascal long VisibleLength(Ptr textPtr,long textLen);

This routine returns the length of the text excluding trailing white space, taking into account the script of the text. Trailing white space is only
excluded if it occurs on the visible right side, in display order.

a b c • •

1 2 3 4 5

VisibleLength of this left-right example = 3.

 • • c b a
5 4 3 2 1

VisibleLength of this right-left example = 5.

Figure 5–VisibleLength

For example, in Pascal:

myVisibleLength := VisibleLength(myText,myOffset);
curSlop := myPixel - TextWidth(myText,0,myVisibleLength);
DrawJust(myText,myVisibleLength,curSlop);

The Script Manager

Inside Macintosh Chapter Addition

Changing Text Case

In Pascal:

Procedure UprText(textPtr: Ptr; len: Integer);
Procedure LwrText(textPtr: Ptr; len: Integer);

In C:

pascal void UprText(Ptr textPtr,short len);
pascal void LwrText(Ptr textPtr,short len);

UprText provides a Pascal interface to the _UprString assembly routine, which will uppercase text up to 32K in length. The LwrText routine
provides the corresponding lowercase routine. Both of these routines will not change the number or position of characters in a string, but are faster
and simpler than the Transliterate routine.

Text Comparison

We have done some performance analyses of Pack6 comparison routines, and based upon those, were able to increase performance by about 50% on
average. This increase results in a corresponding increase in 4th Dimension sorting performance, for example. Also, a long-standing bug in sorting
“œ” and “æ” has been corrected. A test program on the Macintosh SE comparing “The quick brown fox jumped over the lazy dog” to variants
produced the following decreases in comparison time:

Identical text: 94%
Last Character Unequal (g vs. X) 83%
Last Character Weakly Equal (g vs. G): 82%
First Character Unequal (T vs X): 59%
First Character Weakly Equal (T vs t): 29%
All Characters Weakly Equal (T vs t…g vs. G): 25%

Part of the performance increase results from internal caching of 'itl ' resources. Originally all 'itl ' resources (resulting from IUGetIntl
of 0,1,2,4) were cached, but several programs do a _ReleaseResource or _DetachResource on 'itl0', rendering the cache invalid.
Because of this, currently only 'itl2' and 'itl4' are cached. Developers must be sure not to release or detach these resources. Also, only the
system file resources are used, so they cannot be overridden by copies in the application or document resource forks.

The Script Manager

Inside Macintosh Chapter Addition

“The quick brown fox jumped over the lazy dog”

“The quick brown fox jumped over the lazy dog”

“The quick brown fox jumped over the lazy doX”

“The quick brown fox jumped over the lazy doG”

“Xhe quick brown fox jumped over the lazy dog”
“the quick brown fox jumped over the lazy dog”

“THÉ QÜIÇK BRØWÑ FÖX JÜMPÉD ØVÉR THÉ LÅZY DÖG”

A. Identical

B. Unequal

C. Similar

D. Unequal
E. Similar

F. Similar

Last Char

 First Char

All Chars

0

10

20
30

40

50

60

70

80

90

100

A B C D E F

Figure 6–International Text Comparison

Dates

The Macintosh date routines are extended to provide a larger range (roughly 35 thousand years),
and more information. This extension allows programs that need a larger range of dates to use
system routines rather than produce their own, which may not be internationally compatible.
The programmer can also access the stored location (latitude and longitude) and time zone of
the Macintosh from parameter RAM. The Map cdev gives users the ability to change and
reference these values.

The long internal format of a date is as before, in seconds since 12:00 midnight, January 1,
1904, but is represented as a signed 64-bit integer (SANE Comp format), allowing a somewhat
larger range (roughly 500 billion years). Short internal format dates (since they are unsigned)
can be converted to long format by filling the top 32 bits with zero; long formats can be
converted to short by truncating (assuming that they are within range). When storing in files, a
five (or six) byte format can be used for a range of roughly 35 thousand years. This value
should be sign-extended to restore it to a Comp format.

In Pascal:
The Script Manager

Inside Macintosh Chapter Addition

Type LongDateTime = Comp;

The Script Manager

Inside Macintosh Chapter Addition

In C:

typedef comp LongDateTime;

The standard date conversion record is extended using a new structure:

In Pascal:

LongDateRec = Record
case Integer of
0: (era,year,month,day,hour,minute,second,

dayOfWeek,dayOfYear,weekOfYear,
pm,res1,res2,res3: Integer);

1: (list: array [longDateField] of Integer);
2: (eraAlt: Integer;

oldDate: DateTimeRec);
end;

In C:

union LongDateRec {
 struct {
 short era;
 short year;
 short month;
 short day;
 short hour;
 short minute;
 short second;
 short dayOfWeek;
 short dayOfYear;
 short weekOfYear;
 short pm;
 short res1;
 short res2;
 short res3;
 } ld;
 short list[14]; /*Index by LongDateField!*/
 struct {
 short eraAlt;
 DateTimeRec oldDate;
 } od;
};

The default calendar for converting to and from the long internal format is the Gregorian calendar. The era field for this calendar has values 0 for
A.D. and -1 for B.C. (Note that the international date string conversion routines do not append strings for A.D. or B.C.) The current range allowed in
conversion is roughly 30,000 BC to 30,000 AD.

(Note that in different countries the change from the Julian calendar to Gregorian calendar occurred in different years: in Catholic countries, it
occurred in 1582, while in Russia it took place as late as 1917. Dates before these years in those countries should use the Julian calendar for
conversion. The Julian calendar differs from the Gregorian by three days every four centuries.)

The Script Manager

Inside Macintosh Chapter Addition

era
year

month

minute
second

dayOfWeek
dayOfYear

weekOfYear

LongDateRec

day
hour

pm
reserved

LongSecs

Comp
[64-bit (8 byte)
Signed Integer]

0.5T years
2G years

9M years
35 millenia

136 years
194 days

18 hours
4 minutes

C
A
L
E
N
D
A
R

Gregorian
Japanese
(year of the Emperor’s reign)

Arabic
(new moon starts month)
Hebrew
(lunar, but algorithmic)

Figure 7–Long Date ↔ String

InitDateCache

In Pascal:

Function InitDateCache (theCache: DateCachePtr): OSErr;

In C:

pascal OSErr InitDateCache(DateCachePtr theCache);

This routine must be called before using the String2Date or String2Time routines to format the theCache record. Allocation of this record
is the responsibility of the caller: it can either be a local variable, a Ptr or a locked Handle. By using this cache, the performance of the
String2Date and String2Time routines is improved.

The Script Manager

Inside Macintosh Chapter Addition

In Pascal:

Procedure MyRoutine;
Var

myCache: DateCacheRecord;
Begin

InitDateCache (@myCache);
{call the String2Date or Time routines. Note that if you are doing this}
{inside an application where global variables are allowed, you should probably}
{make your Date cache a global and initialize it once, when you initialize}
{the Toolbox Managers.}

End;

In C:

void MyRoutine()
{

DateCacheRecord myCache;

InitDateCache(&myCache);
/* Now you can call String2Date or String2Time, Note that if you are doing this
inside an application where global variables are allowed, you should probably make
your Date cache a global and initialize it once when you initialize the Toolbox
managers
*/

}

String2Date and String2Time

In Pascal:

Function String2Date(textPtr: Ptr;
textLen: longint;
theCache: DateCachePtr;

Var lengthUsed: Longint;
Var dateTime: LongDateRec)

: String2DateStatus;

Function String2Time(textPtr: Ptr;
textLen: longint;
theCache: DateCachePtr;

Var lengthUsed: Longint;
Var dateTime: LongDateRec)

: String2DateStatus;

In C:

pascal String2DateStatus String2Date(Ptr textPtr,long textLen,DateCachePtr theCache,
 long *lengthUsed,LongDateRec *dateTime);

pascal String2DateStatus String2Time(Ptr textPtr,long textLen,DateCachePtr theCache,
 long *lengthUsed,LongDateRec *dateTime);

These routines expect a date and time at the beginning of the text. They parse the text, setting the lengthUsed to reflect the remainder of the text,
and fill the dateTime record. They recognize all the strings that are produced by the international date and time utilities, and others. For example,
they will recognize the following dates: September 1, 1987; 1 Sept 1987; 1/9/1987; and 1 1987 sEpT.

The Script Manager

Inside Macintosh Chapter Addition

If the value of the input year is less than 100, then it is added to 1900; if less than 1000, then it is added to 1000 (the appropriate values are used from
other calendars, gotten from the base date: LongDateTime = 0). Thus the dates 1/9/1987 and 1/9/87 are equivalent.

The routines use the following grammar to interpret the date and time. The relevant fields of the international utilities resources are used for
separators, month and weekday names, and the ordering of the date elements. The parsing is actually semantic-driven, so finer distinctions are made
than those represented in the syntax diagram.

time := number [tSep number [tSep number]] [mornStr | eveStr | timeSuff]
tSep := timeSep | sep
date := [dSep] dField [dSep dField [dSep dField [dSep dField [dSep]]]]
dField := number | dayOfWeek | abbrevMonth | month
dSep := dateSep | st0 | st1 | st2 | st3 | st4 | sep
sep := <non-alphanumeric>

The date defaults are the current day, month and year. The time defaults to 00:00:00. The digits in a year are padded on the left, using the base date
(the date corresponding to zero seconds: Jan 1, 1904). This routine uses the tokenizer to separate the components of the strings. It depends upon the
names of the months and weekdays used from international resources being single alphanumeric tokens.

Note that the date routine only fills in the year, month, day and dayOfWeek; the time routine fills in only the hour, minute and second. Thus the two
routines can be called sequentially to fill complementary values in the LongDateRec.

The return from the routine is a set of bits that indicate confidence levels, with higher numbers indicating low confidence in how closely the input
string matched what the routine expected. For example, inputting a time of 12.43.36 will work, but return a message indicating that the separator was
not standard. This can also be used to parse a string containing both the date and time, by using the confidence levels to determine which portion
comes first. The returned bits include:

In Pascal:

fatalDateTime = $8000;
longDateFound = 1;
leftOverChars = 2;
sepNotIntlSep = 4;
fieldOrderNotIntl = 8;
extraneousStrings = 16;
tooManySeps = 32;
sepNotConsistent = 64;
tokenErr = $8100;
cantReadUtilities = $8200;
dateTimeNotFound = $8400;
dateTimeInvalid = $8800;

The Script Manager

Inside Macintosh Chapter Addition

In C:

#define fatalDateTime 0x8000
#define longDateFound 1
#define leftOverChars 2
#define sepNotIntlSep 4
#define fieldOrderNotIntl 8
#define extraneousStrings 16
#define tooManySeps 32
#define sepNotConsistent 64
#define tokenErr 0x8100
#define cantReadUtilities 0x8200
#define dateTimeNotFound 0x8400
#define dateTimeInvalid 0x8800

LongDate Conversion

In Pascal:

Procedure LongDate2Secs(lDate: LongDateRec;
Var lSecs: LongDateTime);

Procedure LongSecs2Date(lSecs: LongDateTime;
Var lDate: LongDateRec);

In C:

pascal void LongDate2Secs(const LongDateRec *lDate,LongDateTime *lSecs);

pascal void LongSecs2Date(LongDateTime *lSecs,LongDateRec *lDate);

These routines extend the range of the Macintosh calendar as discussed above. Any fields that are not used should be zeroed. On input, the
LongDate2Secs routine will use the day and month unless the day is zero; otherwise the dayOfYear is used unless it is zero; otherwise the
dayOfWeek and weekOfYear are used.

Other fields are additive: if you supply a month of 37, that will be interpreted as adding 3 to the year, and using a month of 1. This latter property is
subject to some restrictions imposed by the internal arithmetic: for example, | hour*60+minute | must be less than 32767.

Two new interfaces have been added to Pack6 for LongDate support:

In Pascal:

IULDateString(dateTime: LongDateTime;
form: DateForm;

Var Result: Str255;
intlParam: Handle);

Assembly selector: 20

IULTimeString(dateTime: LongDateTime;
wantSeconds: BOOLEAN;

Var Result: Str255;
intlParam: Handle);

Assembly selector: 22

The Script Manager

Inside Macintosh Chapter Addition

In C:

pascal void IULDateString(LongDateTime *dateTime,DateForm longFlag,Str255 result,
 Handle intlParam);

pascal void IULTimeString(LongDateTime *dateTime,Boolean wantSeconds,Str255 result,
 Handle intlParam);

These routines take a LongDateTime, and return a formatted string. Only the old fields year..second, and dayOfWeek are used. If the
intlParam is zero, then the international resource 0 ('itl0') is used. The output year is limited to four digits: e.g., from 1 to 9999 A.D.

ToggleDate and ValidDate

In Pascal:

Function ToggleDate (Var mySecs: LongDateTime;
field: LongDateField;
delta: DateDelta;
ch: Integer;
params: TogglePB)

:ToggleResults;

Function ValidDate (Var date : LongDateRec;
flags: Longint;

Var newSecs: LongDateTime)
: Integer;

In C:

pascal ToggleResults ToggleDate(LongDateTime *lSecs,LongDateField field,
 DateDelta delta,short ch,const TogglePB *params);

pascal short ValidDate(LongDateRec *vDate,long flags,LongDateTime *newSecs);

The ToggleDate routine is used to modify a date or time record by toggling one of the fields up or down. The routine returns a valid date by
performing two types of action. If the affected field overflows or underflows, then it will wrap to the corresponding low or high value. If changing
the affected field causes other fields to be invalid, then a close date is selected (which may cause other fields to change). For example, toggling the
year upwards in February 29, 1980 results in March 1, 1981. Currently only the fields year..second, and am can be toggled, although this should
change in the future.

The routine will also toggle by character, if the delta = 0. The character will be used to change the field in the following way. If it is a digit, then it
will be added to the end of the field, and the field will be then modified to be valid in a similar manner as in the alarm clock. For example, if the
minute is 54, then to replace it by 23 by entering characters, first the minute will change to 42, then to 23. The AM/PM field will also use letters.

The Script Manager

Inside Macintosh Chapter Addition

In Pascal:

TogglePB = RECORD
 togFlags: LONGINT;
 amChars: ResType; {from intl0}
 pmChars: ResType; {from intl0}
 reserved: ARRAY [0..3] OF LONGINT;
 END;

In C:

struct TogglePB {
 long togFlags;
 ResType amChars; /*from intl0*/
 ResType pmChars; /*from intl0*/
 long reserved[4];
};

The parameter block should be set up as follows. It should contain the uppercase versions of the AM and PM strings to match (the defaults
mornStr and eveStr can be copied from the international utilities using IUGetIntl, and converted to uppercase with UprText).

The ToggleDate routine makes an internal call to ValidDate, which can also be called directly by the user. ValidDate checks the date
record for correctness, using the params.togflags which is passed to it by ToggleDate. If any of the record fields are invalid, ValidDate
returns a DateField value corresponding to the field in error. Otherwise, it returns a -1.

The params.togflags value passed to ValidDate by ToggleDate are the same for ToggleDate and ValidDate. The low word bits
correspond to the values in the enumerated type DateField. For example, to check the validity of the year field you can create a mask by doing
the following:

yearFieldMask = 2**yearField;

The high word of the flags value can be used to set various other conditions. The only one currently used is a flag which can be set to restrict the
range of valid dates to the short date format (smallDateBit = 31; smallDateMask = $80000000). All other bits are reserved, and should be
set to zero. The reserved values should also be zeroed.

Togflags should normally be set to $007F, which can be done by using the predeclared constant dateStdMask.

The Script Manager

Inside Macintosh Chapter Addition

era
year

month

minute
second

dayOfWeek
dayOfYear

weekOfYear

LongDateRec

day
hour

pm
reserved

1 / 31 / 88 2 / 29 / 8812 / 31 / 88

“2”

12 / 31 / 88

“3”

3 / 31 / 88

Figure 8–ToggleDate

Reading and Writing the Location

In Pascal:

PROCEDURE ReadLocation(VAR loc: MachineLocation);
PROCEDURE WriteLocation(loc: MachineLocation);

In C:

pascal void ReadLocation(MachineLocation *loc);
pascal void WriteLocation(const MachineLocation *loc);

These routines allow the programmer to access the stored geographic location of the Macintosh and time zone information from parameter RAM.
For example, the time zone information can be used to derive the absolute time (GMT) that a document or mail message was created. With this
information, when the document is received across time zones, the creation date and time are correct. Otherwise, documents can appear to be created
after” they are read (e.g., I can create a

The Script Manager

Inside Macintosh Chapter Addition

message in Tokyo on Tuesday and send it to Cupertino, where it is received and read on Monday). Geographic information can also be used by
applications which require it.

If the MachineLocation has never been set, then it should be <0,0,0>. The top byte of the gmtDelta should be masked off and preserved when
writing: it is reserved for future extension. The gmtDelta is in seconds east of GMT: e.g., San Francisco is at minus 28,800 seconds (8 hours *
3600 seconds per hour). The latitude and longitude are in fractions of a great circle, giving them accuracy to within less than a foot, which should be
sufficient for most purposes. For example, Fract values of 1.0 = 90°, -1.0 = -90°, -2.0 = -180°.

In Pascal:

MachineLocation = RECORD
 latitude: Fract;
 longitude: Fract;
 CASE INTEGER OF
 0:
 (dlsDelta: SignedByte); {signed byte; daylight savings delta}
 1:
 (gmtDelta: LONGINT); {must mask - see documentation}
 END;

In C:

struct MachineLocation {
 Fract latitude;
 Fract longitude;
 union{
 char dlsDelta; /*signed byte; daylight savings delta*/
 long gmtDelta; /*must mask - see documentation*/
 }gmtFlags;
};

The gmtDelta is really a three-byte value, so the user must take care to get and set it properly as in the following code examples:

In Pascal:

Function GetGmtDelta(myLocation: MachineLocation): longint;
Var

internalGmtDelta: Longint;
begin

With myLocation Do Begin
internalGmtDelta := BAnd(gmtDelta,$00FFFFFF); {get value}
If BTst(internalGmtDelta,23) {sign extend}

Then internalGmtDelta := BOr(internalGmtDelta,$FF000000);
GetGmtDelta := internalGmtDelta;
End;

End;

Procedure SetGmtDelta(Var myLocation: Location; myGmtDelta: Longint);
Var

tempSignedByte: SignedByte;

BEGIN
WITH myLocation DO BEGIN

tempSignedByte := dlsDelta;
gmtDelta := myGmtDelta;
dlsDelta := tempSignedByte;

END;
END;

The Script Manager

Inside Macintosh Chapter Addition

In C:

long GetGmtDelta(MachineLocation myLocation)
{

long internalGMTDelta;

internalGMTDelta = myLocation.gmtDelta & 0x00ffffff;

if ((internalGMTDelta >> 23) & 1) // need to sign extend
internalGmtDelta = internalGmtDelta | 0xff000000;

return(internalGmtDelta);
}

void SetGmtDelta(MachineLocation *myLocation, long myGmtDelta)
{

char tempSignedByte;

tempSignedByte = myLocation->dlsDelta;
myLocation->gmtDelta = myGmtDelta;
myLocation->dlsDelta = tempSignedByte;

}

±

Seconds:
(from GMT)

1 degree
(69 mi)

1 minute
(1.2 mi)

1 second
(102 ft)

1 foot180
degrees

PRAM
dlsDelta

Latitude
Longitude

gmtDelta

gmtDelta

Figure 9–Locations

The Script Manager

Inside Macintosh Chapter Addition

Setting Latitude, Longitude, and Time Zone cdev

This new Control Panel module on the utilities disk allows the user to set the latitude, longitude, and time zone. The values are stored in parameter
RAM on the host machine. (See the Map cdev documentation for more details).

Figure 10–Map

Numbers

The new number routines supplement SANE, allowing applications to display formatted
numbers in the manner of Microsoft Excel or Fourth Dimension, and to read both formatted
and simple numbers. The formatting strings allow natural display and entry of numbers and
editing of format strings even though the original numbers and the format strings were entered
in a language other than that of the final user.

Number parsing is based on a NumberParts table that describes the essentials of numeric
display for a particular language, including such components as thousands separator, decimal
point, scientific notation, forced zeroes in the absence of significant digits, etc. A default
NumberParts table for each locale’s system resides in the 'itl4' resource for that system.

In Pascal:

NumberParts = RECORD
version: integer;
data: array [tokLeftQuote..tokMaxSymbols] OF WideChar;
pePlus, peMinus, peMinusPlus: WideCharArr;
altNumTable: WideCharArr;
reserved: packed array [0..19] of Char; (must be zeroed!}

END;

The Script Manager

Inside Macintosh Chapter Addition

The Script Manager

Inside Macintosh Chapter Addition

In C:

struct NumberParts {
 short version;
 WideChar data[31]; /*index by [tokLeftQuote..tokMaxSymbols]*/
 WideCharArr pePlus;
 WideCharArr peMinus;
 WideCharArr peMinusPlus;
 WideCharArr altNumTable;
 char reserved[20];
};

Here is an example of how to access the 'itl4' default NumberParts table:

In Pascal:

Function DefaultParts(Var x: NumberParts): Boolean;
Var

itl4: Itl4Handle;
Begin

DefaultParts := false; {assume error}
itl4 := itl4Handle(IUGetIntl(4)); {get itl4 record}
if itl4 <> nil then begin {if ok}

x := NumberPartsPtr(ord(itl4^)+itl4^^.defPartsOffset)^;
{number parts subtable}

DefaultParts := true; {no error}
end;

End;

In C:

DefaultParts(NumberParts *x)
{

Itl4Handle itl4;

itl4 = (Itl4Handle)IUGetIntl(4);

if (itl4) {
*x = *((NumberPartsPtr)((char *)(*itl4) + ((*itl4)->defPartsOffset)));
return(1);

}

return(0);
}

The user provides a format descriptor string very similar to Fourth Dimension’s. This format string is translated by Str2Format in a canonical
format which is transportable between different languages such as French, English, and Japanese. The canonical format is stored in a record called
NumFormatString. This record’s structure is as follows:

In Pascal:

NumFormatString = PACKED RECORD
 fLength: Byte;
 fVersion: Byte;
 data: PACKED ARRAY [0..253] OF SignedByte; {private data}
 END;

The Script Manager

Inside Macintosh Chapter Addition

In C:

struct NumFormatString {
 char fLength;
 char fVersion;
 char data[254]; /*private data*/
};

The format descriptor string may be broken into as many as three parts: positive, negative, and zero. For example, the number 3456.713 used with
the canonical format produced from “#,###.#;(#,###.#)” will produce the string representation “3,456.7” in the United States. In Switzerland the
same canonical format would be displayed as “#.###,#;(#.###,#),” and the number displayed with this format would be “3.456,7.”

The number formats include the following features (the defaults for the U.S. are listed following):

Separators:

decimal separator (.), thousands separator (,)

Example: format string: ###,###.0##,###
1 —> 1.0
1234 —> 1,234.0
3.141592 —> 3.141,592

Digits:

zero digit (0), skipping digit (#), padding digit (^), padding value (NBSP)

Example: format string: ###;(000);^^^
1 —> 1
-1 —> (001)
0 —> 0

The number format routines always fill in digits from the right or from the left of the decimal point.

Example: format string: ###‘foo’###
123foo456 —> 123foo456
22foo44 —> 2foo244
123foo —> 123

Example: format string: 0.###‘foo’###
0.foo123 —> 0.123
0.1foo456 —> 0.145foo6
0.1456 —> 0.145foo6

Formats using zero and skipping digit characters do not allow extension beyond the minimum number of digits specified to the right or left
of the decimal place. For example: users must provide the desired maximum digits on the left: e.g., #,###,### instead of #,###.
X2FormStr will return a result of formatOverflow when the number contains more digits to the left of the decimal point than
specified in the format string. Input values with more digits to the right of the decimal point than there are digits allowed in the format
string will be rounded on output.

The Script Manager

Inside Macintosh Chapter Addition

Example: format string: ###.###
1234.56789 —> formatOverflow on output
1.234999 —> 1.235

Control:

left quote (‘), right quote (’), escape quote (\), sign separator (;)

Example: format string: ###‘CR’;###‘DB’;‘\’zero\‘’
1 —> 1CR
-1 —> 1DB
0 —> ‘zero’

Marks:

plus (+), minus (-), percent (%), positive exponent (E+), negative exponent (E-), mixed exponent (E)

Example: format string: ##%
0.1 —> 10%

There is a limitation creating format strings with exponential notation: the user must always place zero leaders immediately after the
exponent marks and skipping digits before, when more than one digit must be represented between the exponent and the decimal point.

Example: format string: ##.####E+0
1.23E+3 —> 1.23E+3

The sign of exponents must be made explicit in the format string by using ePlus (E+) or eMinus (E-) format. eMinusPlus notation (E) is
only used in the input number string to specify a positive exponent when the sign of the format string exponent is negative.

format + exponent sign -
ePlus ePlus(E+) eMinus(E-)
eMinus eMinusPlus(E) eMinus(E-)

Use ePlus notation in the format string to specify negatively or positively signed exponents in the input number string:

Example: ePlus format string: #.#E+#
1.2E-3 —> 1.2E-3
1.2E+3 —> 1.2E+3

Example: eMinus format string: #.#E-#
1.2E-3 —> 1.2E-3
1.2E3 —> 1.2E3 (i.e., 1200)

Literals:

unquoted literals ([]$:(){}), literals requiring quotes (ABC...)

Example: format string: [###‘ Million ’###‘ Thousand ’###]
300 —> [300]
3000000 —> [3 Million 000 Thousand 000]

The Script Manager

Inside Macintosh Chapter Addition

A typical scenario consists of the application reading the default NumberParts table from 'itl4'. One provides a format definition string, such
as the string “#.###,#;(#.###,#)” of the above example, as a template for whatever field one is currently working in. The application submits that
string to Str2Format, which returns a canonical format string corresponding to the user’s input. This canonical format, rather than the raw format
definition string, is stored in the document. The program can convert the canonical format back to a user-editable string using the Format2Str
routine.

When a number is to be displayed, the application passes the number and canonical format to FormatX2Str to produce a formatted number that
the application then displays in that field. If the user types a string into the field, then FormatStr2X can be used with the canonical format for the
field to read formatted numbers. That is, the user can type “(3.678,9)” and have the number interpreted correctly.

The Script Manager

Inside Macintosh Chapter Addition

Converting to Canonical Formats

In Pascal:

FUNCTION Str2Format(inString: Str255;partsTable: NumberParts;
 VAR outString: NumFormatString): FormatStatus;

In C:

pascal FormatStatus Str2Format(const Str255 inString,const NumberParts *partsTable,
 NumFormatString *outString);

Str2Format converts a string typed by the user into a canonical format. It checks the validity of the format string itself and also that of the
NumberParts table, because the NumberParts table is programmable by the application.

#
^
*

E
%
0
“
”
…

NumberParts
Table

.
,

##,###.00;(##,###.00)
Format

Canonical Format
(English)

Figure 11–Str2Format

The Script Manager

Inside Macintosh Chapter Addition

Displaying the Canonical Format String

In Pascal:

FUNCTION Format2Str(myCanonical: NumFormatString;partsTable: NumberParts;
 VAR outString: Str255;VAR positions: TripleInt): FormatStatus;

In C:

pascal FormatStatus Format2Str(const NumFormatString *myCanonical,
const NumberParts *partsTable,Str255 outString,TripleInt *positions);

Format2Str creates the string corresponding to a format definition string which has been created by a prior call to Str2Format and according to
the NumberParts table. It is the inverse operation of Str2Format. This allows programs to display previously entered formats for users to edit.

#
^
*

E
%
0
“
”
…

NumberParts
Table

,
.

##.###,00;(##.###,00)
Format

Canonical Format

(French)

Figure 12–Format2Str

The Script Manager

Inside Macintosh Chapter Addition

Formatting Numbers

In Pascal:

FUNCTION FormatX2Str(x: Extended;myCanonical: NumFormatString;partsTable: NumberParts;
 VAR outString: Str255): FormatStatus;

In C:

pascal FormatStatus FormatX2Str(extended x,const NumFormatString *myCanonical,
 const NumberParts *partsTable,Str255 outString);

This routine creates a textual representation of a number according to a canonical format which has been created by a prior call to Str2Format.

#
^
*

E
%
0
“
”
…

NumberParts
Table

.
,

–3456.7

Canonical Format

Formatted String
(3,456.70)

(English)

Figure 13–FormatX2Str

The Script Manager

Inside Macintosh Chapter Addition

Reading Formatted Numbers

In Pascal:

FUNCTION FormatStr2X(source: Str255;myCanonical: NumFormatString;partsTable: NumberParts;
 VAR x: Extended): FormatStatus;

In C:

pascal FormatStatus FormatStr2X(const Str255 source,const NumFormatString *myCanonical,
 const NumberParts *partsTable,extended *x);

This routine reads a textual representation of a number according to a canonical format which has been created by a prior call to Str2Format, and
creates an extended floating point number which corresponds to that string.

Internally, the routine converts the string into a format acceptable to SANE, matching against the three possible patterns in the canonical format. If
the input string does not match any of the patterns, then FormatStr2X parses the string as best it can returning the result. Currently it is converted
to a simple form, stripping non-digits and replacing the decimal point, before calling SANE.

#
^
*

E
%
0
“
”
…

NumberParts
Table

,
.

–3456.7
Extended

Canonical Format

Formatted String
(3.456,70)

(French)

Figure 14–FormatStr2X

The Script Manager

Inside Macintosh Chapter Addition

Summary of Routines

The updated MPW 3.0 interface files for the Script Manager 2.0 routines are available on
AppleLink in the Developer Services Bulletin Board (Developer Services:Developer Technical
Support:Macintosh:Latest MPW Interfaces) and from APDA as part of the MPW 3.0 final
product.

Further Reference:
• Inside Macintosh, Volume V-293, The Script Manager
• Script Manager Hints and Recommendations (APDA)

The Script Manager

